姓名 |
彭程 |
性别 |
男 |
|
出生年月 |
1988.11
|
行政职务 |
|
学历 |
博士足球竞彩app研究生 |
学位 |
博士 |
专业技术职务及任导师情况 |
教授,博士生导师 |
所足彩app在一级学科名称 |
动力工程及工程热物理 |
所足彩app在二级学科名称 |
化工过程机械 |
|
国内外学习和工作经历
2020/12 — 至今:教授,博士生导师,机械工程学院,足彩app
2018/08 — 2020/11:博士后,能源与采矿工程系,美国宾州州立大学
2013/07 — 2018/05:哲学博士,机械工程系,美国特拉华大学
2010/09 — 2013/06:工学硕士,工程热物理所,中科院大学
2006/09 — 2010/07:工学学士,能源与动力工程学院,西安交通大学
主讲课程
本科生:数学建模
足球竞彩app研究生:高等流体力学、湍动力学、独立专题足球竞彩app研究
足球竞彩app研究领域
流体力学、计算流体力学方法及应用、气-固、液-固两相湍流数值模拟方法及机理、多孔介质多相渗流、微流控、格子Boltzmann方法
欢迎具有流体力学、工程热物理、应用数学等专业背景的同学报考。
承担科研项目情况
足彩app在研项目
2022.01-2024.12,国家自然科学基金青年项目 12102232 主持
2022.01-2024.12,山东省自然科学基金青年项目 ZR2021QA010 主持
2022.01-2024.12,山东省优秀青年科学基金 2022HWYQ-023 主持
2023.01-2026.12,国家自然科学基金联合基金重点项目U2241269 课题主持
2020.12-2025.12,足彩app齐鲁青年学者计划 主持
2023.07-2026.06,智能保护气囊装置的设计和研发(企业横向)
结题项目
2012.07-2017.08,美国国家科学基金(NSF),CBET-1235974 主研
2012.10-2017.09,美国国家科学基金(NSF),AGS-1139743 主研
2015.06-2018.12,美国国家科学基金(NSF),CNS1513031
期刊论文
2024
[45] S. Balachandar, C. Peng, L.-P. Wang, 2024, Turbulence modulation by suspended finite-sized particles – towards physics-based multiphase subgrid modeling, Physical Review Fluids, accepted.
[44] K. Karzhaubayev, L.-P. Wang, C. Peng, D. Zhakebayev, 2024, An immersed boundary method-discrete unified gas kinetic scheme simulation of particle-laden turbulent channel flow on a nonuniform orthogonal mesh, International Journal of Numerical Methods in Fluids, 96(3): 318-335.
[43] C. Peng*, L.-P. Wang, S. Chen, 2024, Preferential accumulation of finite-size particles in near-wall streaks, Journal of Fluid Mechanics, 980: A38.
[42] Z. Zhang, C. Peng*, C. Li, H. Zhang, T. Xian, L.-P. Wang*, 2024, A highly-efficient locally encoded boundary scheme for lattice Boltzmann method on GPU, Computer Physics Communications, 298: 109119.
[41] C. Peng, L.-P. Wang, L. Ji*, S. Chen, Z. Zhu, 2024, Lattice Boltzmann simulations of homogeneous shear turbulence laden with finite-size particles, Computers & Mathematics with Applications, 154: 65-77.
[40] J. Shen, C. Peng, Z. Lu*, L.-P. Wang, 2024, The influence of particle density and diameter on the interactions between the finite-size particles and the turbulent channel flow, International Journal of Multiphase Flow, 170: 104659.
2023
[39] C. Peng, X. Wu, L.-P. Wang, L. Ji*, 2023, Direct numerical simulation of homogeneous shear turbulence subject to a shear periodic boundary with the lattice Boltzmann method, Computers & Mathematics with Applications, 146: 192–199.
[38] C. Peng*, Q. Sun, L.-P. Wang, 2023, Parameterization of turbulence modulation
by finite-size solid particles in forced homogeneous isotropic turbulence, Journal of Fluid Mechanics, 963, A6.
[37] C. Peng*, L.-P. Wang, 2023, Mechanisms and models of particle drag enhancements in turbulent environments, Journal of Fluid Mechanics, 959, A30.
[36] M. Soomro*, L.F. Ayala, C. Peng, O.M. Ayala, 2023, Fugacity-based lattice Boltzmann method for multicomponent multiphase systems. Physical Review E, 107, 015304.
2022
[35] J. Shen, C. Peng, J. Wu, K.L. Chong, Z. Lu*, L.-P. Wang, 2022 Turbulence modulation by finite-size particles of different diameters and particle–fluid density ratios in homogeneous isotropic turbulence. Journal of Turbulence 23 (8), 433–453.
[34] Z. Dong, L.-P. Wang*, C. Peng, T. Chen, 2022, A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows. Physics of Fluids. 34: 093608.
[33] Z. Wang*, M. Soomro, C. Peng, L.F. Ayala, O.M. Ayala, 2022, Two pressure boundary conditions for multi-component multiphase flow simulations using the pseudo-potential lattice Boltzmann model. Computers & Fluids, 248: 105672.
2021
[32] C. Peng*, L. Ayala, O. Ayala, 2021, Fluid-wall interactions in pseudopotential lattice Boltzmann models, Physical Review E, 104: 035301.
[31] L.Q. Hu, Z.Q. Dong, C. Peng*, L.P. Wang*, 2021, Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow Using the Lattice Boltzmann Method, Fluids, 6: 217. (Editor’s pick)
[30] B. Yang, C Peng*, G.C. Wang, L.P. Wang, 2021, A direct numerical simulation study of flow modulation and turbulent sedimentation in particle-laden downward channel flows. Physics of Fluids, 33, 093306.
[29] J. Shen, Z.M. Lu*, C. Peng, L.P. Wang, 2021, Influence of particle-fluid density ratio on the dynamics of finite size particle in homogeneous isotropic turbulent flows, Physical Review E, 104, 025109.
[28] C. Peng*, L. Ayala, O. Ayala, 2021, A thermodynamically consistent pseudo-potential lattice Boltzmann model for multi-component, multiphase miscible mixtures, Journal of Computational Physics, 429: 110018.
2020
[27] C. Peng, O. Ayala, L.P. Wang*, 2020, Flow modulation by a few fixed spherical particles in a turbulent channel flow, Journal Fluid Mechanics, 884: A15.
[26] C. Peng*, L.P. Wang, 2020, Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement, Physical Review E, 101: 053305.
[25] C. Peng*, L. Ayala, Z. Wang, O. Ayala, 2020, Attainment of rigorous thermodynamic consistency in single-component pseudo-potential lattice Boltzmann models via a customized equation of state, Physical Review E, 101: 063309.
[24] G.C. Wang, F. Yang, K. Wu, Y. Ma, C. Peng, T. Liu, L.P. Wang*, 2020, Estimation of the dissipation rate of turbulent kinetic energy: A review, Chemical Engineering Science, 229: 116133.
2019年及以前
[23] C. Peng, O.M. Ayala, L.P. Wang*, 2019, A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow, Journal of Fluid Mechanics, 875: 1096-1144.
[22] C. Peng*, L.P. Wang, 2019, Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally-buoyant particles at low flow Reynolds number, Acta Mechanica, 230: 517-539.
[21] C. Peng, Z. Guo, L.P. Wang*, 2019, A lattice-BGK model for the Navier-Stokes equations based on a rectangular grid, Computers & Mathematics with Applications, 78: 1076-1094.
[20] C. Peng*, O.M. Ayala, L.P. Wang, 2019, A comparative study of immersed boundary method and interpolated bounce-back scheme in no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows, Computers & Fluids, 192: 104233。
[19] C. Peng*, O.M. Ayala, L.P. Wang, 2019, A comparative study of immersed boundary method and interpolated bounce-back scheme in no-slip boundary treatment in the lattice Boltzmann method: Part II, turbulent flows, Computers & Fluids, 192: 104251.
[18] C. Peng*, L.F. Ayala, O.M. Ayala, L.P. Wang, 2019, Isotropy and spurious currents in pseudo-potential multiphase lattice Boltzmann models, Computers & Fluids, 191: 104257.
[17] G.C. Wang, D.D. Wan, C. Peng, K. Liu, L.P. Wang*, 2019, LBM study of aggregation of mono-sized spherical particles in homogeneous isotropic turbulence, Chemical Engineering Science, 201: 201-211.
[16] L.P. Wang*, H. Min, C. Peng, N. Geneva, Z. Guo, 2019, A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice, Computers & Mathematics with Applications, 78: 1053-1075.
[15] H. Min, C. Peng, Z. Guo, L.P. Wang*, 2019, An inverse design analysis of non-uniform forcing in MRT lattice Boltzmann schemes on square and rectangular lattice grids, Computers & Mathematics with Applications, 78: 1095-1114.
[14] J.C. Brändle de Motta*, P. Costa, J.J. Derksen, C. Peng, L.P. Wang, W.-P. Breugem, J.L. Estivalezes, S. Vincent, E. Climent, P. Fede, P. Barbaresco, N. Renon, 2019, Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows, Computers & Fluids, 179: 1-14.
[13] C. Peng, N. Geneva, Z. Guo, L.P. Wang*, 2018, Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method, Journal of Computational Physics, 357: 16-42.
[12] C. Peng*, N. Geneva, Z. Guo, L.P. Wang, 2017, Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method, Physical Review E, 95: 013301.
[11] C. Peng*, Z. Guo, L.P. Wang, 2017, A lattice Boltzmann model capable of mesoscopic vorticity computation, Physical Review E, 96: 053304.
[10] Z. Zhang*, C. Peng, J. Xu, 2017, A molecular collision operator of adjustable direction for the discrete velocity direction model, Physica A, 483: 25-35.
[9] N. Geneva, C. Peng, X. Li, L.P. Wang*, 2017, An efficient scalable implementation of interface-resolved direct numerical simulation of turbulent particle-laden channel flow, Parallel Computing, 67: 20-37.
[8] C. Peng, Y. Teng, B. Hwang, Z. Guo, L.P. Wang*, 2016, Implementation issues and benchmarking of moving rigid particle simulations in a viscous flow, Computers & Mathematics with Applications, 72: 349-374.
[7] C. Peng, H. Min, Z. Guo, L.P. Wang*, 2016, A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid, Journal of Computational Physics, 326: 893-912.
[6] L.P. Wang*, C. Peng, Z. Guo, Z. Yu, 2016, Lattice Boltzmann simulation of particle-laden turbulent channel flow, Computers & Fluids, 124: 226-236.
[5] L.P. Wang*, C. Peng, Z. Guo, Z. Yu, 2016, Flow modulation by finite-size neutrally buoyant particles in a turbulent channel flow, ASME Journal of Fluid Engineering, 128: 041306.
[4] Y. Zong, C. Peng, Z. Guo, L.P. Wang*, 2016, Designing correct fluid hydrodynamics on a rectangular grid using MRT lattice Boltzmann approach, Computers & Mathematics with Applications, 72: 288-310.
[3] S.Y. Chen*, C. Peng, Y. Teng, L.P. Wang, 2016, Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement, Computers & Fluids, 136: 228-246.
[2] L.P. Wang*, O. Castro, O. Ayala, H. Gao, C. Peng, 2016, Study of local turbulence profiles relative to the particle surface in particle-laden turbulent flows, ASME Journal of Fluid Engineering, 128: 041307.
[1] Z. Zhang, C. Peng, J. Xu, 2013, H theorem and sufficient conditions for the discrete velocity direction model, Modern Physics Letter B, 27(1): 135007.
邀请报告
[1] C. Peng, L.P. Wang, Applications of the lattice Boltzmann method in studying particle-laden turbulent flows, ICMMES-CSRC Award presentation, 16th ICMMES, Edinburgh, Scotland, July 22 - 26, 2019.
[2] 彭程,颗粒槽道湍流的湍动能平衡足球竞彩app研究, 第24期流体力学青年学术沙龙,2021年4月24日。
[3] 彭程,基于格子Boltzmann方法的颗粒湍流足球竞彩app研究,上海交通大学,机械与动力工程学院,2021年6月1日。
[4] C. Peng, Applications of the lattice Boltzmann method in studying particle-laden turbulent flows, 13th Engineering Workshop between Shandong University and Kumamoto University, Jinan, Shandong, Dec. 10, 2021.
[5] C. Peng, Applications of the Lattice Boltzmann Method in Studying Turbulent Flows Laden with Finite-size Particles, CFSM Seminar, Clemson University, Dec. 21, 2022.
获得荣誉
2019 ICMMES-CSRC Award, 16th ICMMES (第16届国际介观尺度方法会议)
2016-2017 美国特拉华大学优秀博士奖学金
2015 美国国家科学基金委旅行奖, 12th ICMMES
2014 美国国家科学基金委旅行奖, 11th ICMMES
2009 首届“中国平安杯”全国大学生创业大赛全国总冠军
足彩app
地址:山东省济南市经十路17923号 足彩app
邮编:250061
电子邮箱:pengcheng@airllevant.com (preferred)